On Blow-up Solutions to the 3D Cubic Nonlinear Schrodinger Equation
نویسندگان
چکیده
منابع مشابه
On Blow-up Solutions to the 3d Cubic Nonlinear Schrödinger Equation
For the 3d cubic nonlinear Schrödinger (NLS) equation, which has critical (scaling) norms L and Ḣ, we first prove a result establishing sufficient conditions for global existence and sufficient conditions for finite-time blow-up. For the rest of the paper, we focus on the study of finite-time radial blow-up solutions, and prove a result on the concentration of the L norm at the origin. Two disp...
متن کاملBlow-up Criteria for the 3d Cubic Nonlinear Schrödinger Equation
We consider solutions u to the 3d nonlinear Schrödinger equation i∂tu+ ∆u + |u|2u = 0. In particular, we are interested in finding criteria on the initial data u0 that predict the asymptotic behavior of u(t), e.g., whether u(t) blows-up in finite time, exists globally in time but behaves like a linear solution for large times (scatters), or exists globally in time but does not scatter. This que...
متن کاملA Class of Solutions to the 3d Cubic Nonlinear Schrödinger Equation That Blow-up on a Circle
We consider the 3d cubic focusing nonlinear Schrödinger equation (NLS) i∂tu+∆u+ |u|u = 0, which appears as a model in condensed matter theory and plasma physics. We construct a family of axially symmetric solutions, corresponding to an open set in H axial(R) of initial data, that blow-up in finite time with singular set a circle in xy plane. Our construction is modeled on Raphaël’s construction...
متن کاملBlow-up of solutions to a nonlinear dispersive rod equation
In this paper, firstly we find the best constant for a convolution problem on the unit circle via a variational method. Then we apply the best constant on a nonlinear rod equation to give sufficient conditions on the initial data, which guarantee finite time singularity formation for the corresponding solutions. Mathematics Subject Classification(2000): 30C70, 37L05, 35Q58, 58E35
متن کاملOn instability for the cubic nonlinear Schrodinger equation
We study the flow map associated to the cubic Schrödinger equation in space dimension at least three. We consider initial data of arbitrary size in Hs, where 0 < s < sc, sc the critical index, and perturbations in Hσ , where σ < sc is independent of s. We show an instability mechanism in some Sobolev spaces of order smaller than s. The analysis relies on two features of super-critical geometric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Research eXpress
سال: 2010
ISSN: 1687-1200,1687-1197
DOI: 10.1093/amrx/abm004